Optimization of Finned-Tube Heat Exchanger with Minimizing the Entropy Production rate
نویسنده
چکیده مقاله:
A compact fin-tube heat exchanger is used to transfer current fluid heat inside the tubes into the air outside. In this study, entropy production and optimized Reynolds number for finned-tube heat exchangers based on the minimum entropy production have been investigated. As a result, the total entropy of compact heat exchangers, which is the summation of the production rate of fluid entropy inside the tube, and the entropy production rate of fluid in the air, is minimum due to the changes in the Reynolds number of the fluid inside the tubes. Based on thermodynamic analysis and study of parameters affecting the entropy production, one expression is proposed for the optimal Reynolds number. The expression is a function of the thermodynamic properties of the fluid in the pipe, fluid thermodynamic properties of air, the effects of ambient temperature, input temperature of the cooling fluid, and geometrical dimensions of the heat exchanger. According to this optimization, effective information for the design of a compact finned-tube heat exchanger would be obtained. Therefore, in practical conditions, using optimal Reynolds number, the system has the lowest irreversibility, and as a result, the best exergy will be accessible. Finally, an empirical correlation is proposed for the optimum Re number that can predict Reopt with less than 0.6 % error.
منابع مشابه
Numerical Studies on the Performance of Finned-Tube Heat Exchanger
Finned-tube heat exchangers are predominantly used in space conditioning systems, as well as other applications requiring heat exchange between two fluids. The design of finned-tube heat exchangers requires the selection of over a dozen design parameters by the designer such as tube pitch, tube diameter, tube thickness, etc... Finned-tube heat exchangers are common devices; however, their perfo...
متن کاملOptimization of the louver angle and louver pitch for a louver finned and tube heat exchanger
The optimization of the louver angle (θ) and the louver pitch (Lp) for a louver finned and tube heat exchanger was investigated numerically along with a simplified conjugate-gradient method (SCGM). The area reduction ratio relative to a plain surface is the objective function to be maximized. A search for the optimum louver angle (θ) and louver pitch (Lp), ranging from 15°< θ < 40° and 2 mm < L...
متن کاملCapability Optimization of refrigerant Circuitry for a Finned Tube Heat Exchanger-A Theoretical Review
Increased concerns about climate change and day by day increment in energy cost has created the importance of Refrigeration & Air Conditioning system with high COP. COP of a Vapour Compression Refrigeration system is mainly influenced by the effectiveness of the Heat Exchanger being Employed. Optimization in the design of Heat Exchanger is highly desirable to improve their effectiveness and red...
متن کاملMinimization of Entransy Dissipations of a Finned Shell and Tube Heat Exchanger
Improving heat transfer and performance in a radial, finned, shell and tube heat exchanger is studied in this study. According to the second law of thermodynamics, the most irreversibilities of convective heat transfer processes are due to fluid friction and heat transfer via finite temperature difference. Entransy dissipations are due to the irreversibilities of convective heat transfer. There...
متن کاملEffective Heat Transfer Enhancement in Finned Tube Heat Exchanger with Different Fin Profiles
During cross flow in a heat exchanger, heat transfer in the front portion of the tube is more compared to back portion of the tube. This is due to less formation of vortices at the backside of the tube. For uniform heat transfer to take place throughout the tube, it is necessary to increase the vortex formation at the rear side of the tube. The aim of this study is to explore the possibilities ...
متن کاملTheoretical Study of Indirect Heating Temperature Swing Adsorption in an Adsorbent Coated Finned Tube Heat Exchanger
In this study, the performance of an adsorbent coated finned tube exchanger for carbon capture was investigated numerically. The results showed that this structure has a great potential for being applied as a medium for CO2 capture by rapid indirect thermal swing adsorption. By using this structure, the recovery of 96%, and purity of 98% were achieved with a simple cycle consisting of two steps...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 8 شماره None
صفحات 0- 0
تاریخ انتشار 2021-12
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023